A Comparison of Some Methods for Solving Linear Interval Equations∗
نویسنده
چکیده
Certain cases in which the interval hull of a system of linear interval equations can be computed inexpensively are outlined. We extend a proposed technique of Hansen and Rohn with a formula that bounds the solution set of a system of equations whose coefficient matrix A = [A, A] is an H-matrix; when A is centered about a diagonal matrix, these bounds are the smallest possible (i.e., the bounds are then the solution hull). Hansen’s scheme also computes the solution hull when the linear interval system Ax = b = [b, b] is such that A is inverse positive and b = −b 6= 0. Earlier results of others also imply that, when A is an M-matrix and b ≥ 0,b ≤ 0, or 0 ∈ b, interval Gaussian elimination (IGA) computes the hull. We also give a method of computing the solution hull inexpensively in many instances when A is inverse positive, given an outer approximation such as that obtained from IGA. Examples are used to compare these schemes under various conditions.
منابع مشابه
Generalized H-differentiability for solving second order linear fuzzy differential equations
In this paper, a new approach for solving the second order fuzzy differential equations (FDE) with fuzzy initial value, under strongly generalized H-differentiability is presented. Solving first order fuzzy differential equations by extending 1-cut solution of the original problem and solving fuzzy integro-differential equations has been investigated by some authors (see for example cite{darabi...
متن کاملExpansion methods for solving integral equations with multiple time lags using Bernstein polynomial of the second kind
In this paper, the Bernstein polynomials are used to approximate the solutions of linear integral equations with multiple time lags (IEMTL) through expansion methods (collocation method, partition method, Galerkin method). The method is discussed in detail and illustrated by solving some numerical examples. Comparison between the exact and approximated results obtained from these methods is car...
متن کاملA new idea for exact solving of the complex interval linear systems
In this paper, the aim is to find a complex interval vector [Z] such that satisfies the complex interval linear system C[Z]=[W]. For this, we present a new method by restricting the general solution set via applying some parameters. The numerical examples are given to show ability and reliability of the proposed method.
متن کاملApplication of Chebyshev Polynomials for Solving Abel's Integral Equations of the First and Second Kind
In this paper, a numerical implementation of an expansion method is developed for solving Abel's integral equations of the first and second kind. The solution of such equations may demonstrate a singular behaviour in the neighbourhood of the initial point of the interval ofintegration. The suggested method is based on the use of Taylor series expansion to overcome the singularity which le...
متن کاملModified Linear Approximation for Assessment of Rigid Block Dynamics
This study proposes a new linear approximation for solving the dynamic response equations of a rocking rigid block. Linearization assumptions which have already been used by Hounser and other researchers cannot be valid for all rocking blocks with various slenderness ratios and dimensions; hence, developing new methods which can result in better approximation of governing equations while keepin...
متن کاملA new iteration method for solving a class of Hammerstein type integral equations system
In this work, a new iterative method is proposed for obtaining the approximate solution of a class of Hammerstein type Integral Equations System. The main structure of this method is based on the Richardson iterative method for solving an algebraic linear system of equations. Some conditions for existence and unique solution of this type equations are imposed. Convergence analysis and error bou...
متن کامل